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ABSTRACT: Previously introduced method for trans-
forming kinetic function expression was applied on the dif-
ferential form of isothermal Johnson–Mehl–Avrami (JMA)
nucleation and growth equation, to determine the duration
of the induction period, �. The assisting function � � tm was
used to obtain a new equation, which enables determination
of the induction time, �, along with the Avrami parameter, n.
The procedure was tested using a developed computer pro-
gram on simulated data, experimental poly(ethylene-tere-
phtalate) (PET) cold crystallization data, and poly(ester-ure-

thane) polycaprolactone-diol polymer (PEU) crystallization
data obtained from literature. The test results show the
validity of developed equations and their applicability for
the determination of kinetic parameters, particularly the
induction time. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93:
2454–2458, 2004
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INTRODUCTION

Differential scanning calorimetry (DSC) is used to in-
vestigate the reaction kinetics of a broad range of
solid-state processes. The two basic approaches ac-
cording to the experimental conditions are isothermal
and nonisothermal. In isothermal experiments, the
sample is quickly brought to the desired constant tem-
perature, and the heat flow of the system is monitored
as a function of time. In the classical approach, the
DSC crystallization peak is transformed into a sigmoid
crystallization curve, which represents the amount of
heat released as a function of time, that is, the DSC
peak area has to be integrated. The amount of the heat
released at a given time, �H(t), is obtained by integrat-
ing the area enclosed by the baseline and the peak
between the induction time, �, (the crystallization
starting point) and the elapsed time, t, (during the
course of crystallization). The relative amount of heat
is calculated by taking the ratio of �H(t) and the total
heat of crystallization, �H, obtained by integration of
the peak between � and the reaction end point. Under
the assumption that the evolution of crystallinity is
linearly proportional to the heat released during the
course of crystallization, the fraction transformed, �,

also called relative crystallinity, can be calculated as a
function of time through the following equation:
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(1)

To quantitatively describe the evolution of crystallin-
ity under isothermal conditions, a number of kinetic
models have been proposed. The Johnson–Mehl–
Avrami (JMA) model1–4 is the most frequently used to
describe nucleation and growth mechanism and it is
based on the spherical growth of nuclei. This model is
often applied to crystallization kinetics of various
polymer materials.5 In the JMA model, the relative
crystallinity as a function of time, �(t), relates to the
crystallization time, t, according to the equation:

��t� � 1 � exp���kt�n� (2)

where k is the crystallization rate constant (subject to
the Arrhenius law), and n is the Avrami exponent. If
the induction time, �, is taken into account, then eq. (2)
transforms into:6–7
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��t� � 1 � exp	��k�t � ���n
 (3)

The differential form of JMA equation applicable to
the isothermal process reads as:8–10

d�

dt � nkntn�1�1 � �� (4)

In DSC experiment, time elapsed between the thermal
equilibrium point and the onset of the reaction is
frequently observed. This elapsed time is called the
induction time or incubation period of crystallization,
and can be interpreted as a measure of time required
for statistic processes to produce a nucleus of suffi-
cient size for growth.11,12 With the induction time, the
eq. (4) can be written:6,7

d�

dt � nkn�t � ��n�1�1 � �� (5)

This particular form of JMA equation is not well
suited for computation since it combines both the
fraction of noncrystallized material and the rate of
reaction. To obtain (1-�), a numerical integration of
experimental data is necessary and solving the eq. (5)
becomes cumbersome.

The rate of the crystallization process can be directly
obtained from the current values of the parameters
fitted if the rate of the crystallization processes is
expressed explicitly as a function of n, k, and �. That is
accomplished by substituting eq. (2) in eq. (4).

d�

dt � nkntn�1 exp���kt�n� (6)

The DSC curve can be fitted to the differential function
eq. (6) (describing the JMA crystallization process)
without previous integration.13 With the inclusion of
induction time, the eq. (6) becomes:

d�

dt � nkn�t � ��n�1 exp{�[k�t � ��]n} (7)

Evidently, whatever form of the function is chosen to
calculate the kinetic parameters, determination of the
induction time is an important element of kinetic anal-
ysis. For DSC investigations this parameter is usually
set visually, as the point of the significant deflection
from the baseline, which is a very subjective method.
To define the induction time more accurately, the
blank run has to be performed and subtracted from
the isothermal crystallization scan. The start of the
process is then taken as the intersection of the extrap-
olated baseline and the resulting exothermal curve.14

Foubert et al.15 gave more attention to this problem; in
their work a calculation algorithm for determining the

start and end points of crystallization process was
proposed.

In this work a previously introduced method of
transforming kinetic function expression16 was ap-
plied to the differential forms of the isothermal JMA
nucleation and growth model to determine the dura-
tion of the induction period, �.

THE METHOD DEVELOPMENT

Recently, the utilization of assisting functions to trans-
form the functions representing kinetic models has
been introduced.16 The transformation is performed
by multiplication of kinetic model function, F, with an
assisting function, �. In this manner the transformed
function, �, is obtained.

� � F� (8)

The differential forms of JMA equation, eqs. (5) and
(7), were used as the kinetic model function, F. Begin-
ning with eq. (5) and applying the assisting function �
� tm, the obtained transformed function, �, equals:

��m� � Ftm � nkn�t � ��n�1�1 � ��tm (9)

The function �(m) has its maximum at t � t(m), which
for a given process depends only on m (k, n, and � are
constant) (Fig. 1). The value of the parameter m is
chosen arbitrarily, thus yielding various transformed
functions, �(m). It will be shown that a useful new
relation is obtained between the parameter m, time of

Figure 1 Kinetic function, F, (representing experimental
data) and transformed functions �1(m) and �2(m). Maxi-
mum of the transformed function, �(m), occurs at different
instants of time, t(m), depending on the value of the param-
eter m. The fraction of noncrystallized material, (1-�(m)),
decreases in the course of time. Thus, as the parameter m
increases, the fraction of noncrystallized material, propor-
tional to the area under the kinetic curve, F, for times greater
than particular t(m), decreases.
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the maximum of the transformed function, t(m), reac-
tion rate of the kinetic function at a time t(m), F(m),
(d�/dt)�

t � t(m)
, fraction of noncrystallized material, (1-

�(m)), and the kinetic parameters, n, k, and �.
For m�0 the maximum of the transformed function

(�1(m) in Fig. 1) corresponds to a shorter time period
compared with the maximum of the kinetic function,
F, that is, t(m�0) � t(m � 0). Analogously, for m0
(�2(m) in Fig. 1), the maximum of the transformed
function corresponds to a greater time period than the
maximum of the kinetic function, F, that is, t(m0)
 t(m � 0).

The time corresponding to the maximum of the
transformed function, �(m), is obtained by equating
its first time derivative to zero. For d�(m)/dt � 0 one
obtains:

d��m�

dt � nkn� �n � 1��t � ��n�2tm�1 � ��

� �t � ��n�1��
d�

dt�tm � �t � ��n�1�1 � ��mtm�1� � 0

(10)

The last equation can be rewritten as:

�n � 1��t � ��n�2tm
A�m�

C � �t � ��n�1tm
F�m�

C

� �t � ��n�1mtm�1
A�m�

C � 0 (11)

where:

F�m� � C�d�

dt ��
t�t�m�

(12)

A�m� � �
t�m�

�

C�d�

dt � dt � C�1 � ��m�� (13)

The significance of A(m) and F(m) is illustrated in
Figure 2.

C is proportionality constant dependent on the DSC
instrument, and hence it does not influence the posi-
tion of the peak of the transformed function �(m).

C�1�t�m� � ��n�2t�m�m�1��n � 1�t�m�A�m�

� �t�m� � ��t�m�F�m� � m�t�m� � ��A�m�� � 0

(14)

For a particular value of m and t�, it follows:

n�t�m�A�m�� � ��F�m�t�m� � mA�m�� � F�m�t2�m�

� A�m�t�m��m � 1� (15)

Eq. (15) is of the form Z � nX��Y and can be used to
determine the parameters n and � from a least squares
fit through the origin. So, for the selected set of values
of m, t(m), F(m), and A(m), are obtained and n and � are
calculated by the least squares fit procedure.

Once the values of the kinetic parameters n and �
are known, the value of the reaction rate parameter k
remains to be determined.

With that aim, eq. (5) is rewritten as:

�d�

dt �
n�1 � ��

� kn�t � ��n�1 (16)

and by introducing the notation from eqs. (12) and
(13), after taking the n-th root the following is ob-
tained:

� F�m�

nA�m��
1/n

� k�t�m� � ���n�1�/n (17)

Eq. (17) is of the form Y � kX, where Y � (F(m)/
nA(m))1/n, X � (t(m)-�)(n�1)/n, and k is obtained as a
slope of the best line fit through the origin.

Figure 2 The functions F and �(m) versus time. The trans-
formed kinetic function, �(m), has maximum at time t
� t(m). At the same time, t(m), the rate of the reaction,
(d�/dayt), is proportional to the value of the kinetic func-
tion, F, that is, its value equals F(m) � C(d�/dt)�t � t(m). The
fraction of noncrystallized material, (1-�(m)), at the time of
the maximum of the transformed kinetic function, t(m), is
proportional to the A(m) � C(1-�(m)) (hatched area). Con-
stant C is dependent on the experimental conditions and
instrument setup.
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TESTING OF THE DERIVED MODEL

The computer program has been written in C��,
which enables the calculation of the kinetic parameters
(�, n, and k) from the experimental isothermal DSC
data of the nucleation and growth processes. The copy
of the program can be obtained upon request from the
authors. However, the algorithm can be easily pro-
grammed in a spreadsheet.

The flowchart of the program is given in Figure 3.
The program starts with the determination of the
range of the optimal values of the parameter m (in that
range, DSC signal is equal to at least 10% of the
maximum signal). Thus, 30 points are selected from
the experimental data, covering the optimal range of
values for the parameter m (shown as crosses in Fig.
4), and from that set of data (m, t(m), F(m), and A(m)),
the values of the kinetic parameters n and � are calcu-
lated according to eq. (15). The rate constant of the
crystallization, k, is determined according to eq. (17).
Higher data acquisition rate (greater number of data
points) enables better selection of the values of F(m)
and A(m) for a particular value of m.

The procedure has been tested on the model system
(n � 3, k � 0.00465 s�1, � � 100 s), on the literature
data for the crystallization of nontoxic biodegradable
polymer (PEU) of Bogdanov et al. (sample P4–36 at
30°C),17 and on the experimental data for poly(ethyl-
ene-terephtalate) (PET) cold crystallization at 105°C. A
Netzsch differential scanning calorimeter, DSC 200,
aluminum pan for PET specimen encapsulation, an
empty pan as the reference, and liquid nitrogen as a

coolant were used. The sample was heated to 300°C in
inert nitrogen atmosphere to melt all crystallinity, rap-
idly cooled to room temperature to trap the material in
amorphous state, and then heated to the dwell tem-
perature to evaluate the kinetics of crystallization.

The kinetic parameters �, n, and k obtained by ap-
plying the method to the simulated, experimental, and
literature data are presented in Table I. Range of the
values of the parameter m used in the calculations are
also given. Standard deviation of the isothermal JMA
fit (eq. 7) obtained using calculated values of the ki-
netic parameters is listed in the last row of the table.

The results in Table I show that the application of
the proposed method on simulated DSC curve results
in excellent concordance of simulated and calculated
data. The same procedure was successfully applied on
PET and PEU isothermal crystallization data and the
latter is shown in Figure 4. The goodness of the fit on
experimental data is illustrated by Figure 4.

Figure 3 Schematic representation of the algorithm steps
used for the calculation of the kinetic parameters �, n, and k
of the isothermal JMA process from the experimental data
obtained in DSC experiment.

Figure 4 The DSC crystallization curve of poly(ester-ure-
thane) polycaprolactone-diol polymer (PEU) at 30°C17. Cir-
cles represent experimental data. The 30 points selected to
cover the optimal range of the value of the parameter m
(t(m), F(m)) are shown as crosses. The fit of the isothermal
JMA eq. (7) using the values of the calculated kinetic param-
eters n, k, and � is shown as line.

TABLE I
Kinetic Parameters Obtained by the Method Proposed in

This Work for the Model System, Experimental Data,
and Literature Data

Model
System

Experimental
Data (PET)

Literature
Data (PEU)17

�/s 100.1 42.6 135.9
n 3.00 2.09 3.47
k/s�1 0.00464 0.00335 0.00206
m �7 � m � 10 �3 � m � 5 �3 � m � 10
st. dev. 0.230 2.295 1.832
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Using the proposed method, the induction times for
crystallization of PET and PEU polymer materials
were determined.

Our method enables the determination of Avrami
exponent and rate constant as well, but once the in-
duction time is known, these parameters can be cal-
culated in the usual way, from the logarithmic form of
eq. (3).

Although this method uses only the extreme of the
transformed function �(m), the large part of the ex-
perimental DSC curve is used in the calculation of the
kinetic parameters �, n, and k (point selection is de-
pendent on the value of the parameter m (Fig. 1)).

When analyzing the experimental data, one should
bear in mind that the points corresponding to the
smallest and the largest values of the parameter m (at
the beginning and the end of the experimental DSC
curve) have lower signal to noise ratio.

CONCLUSION

Previously developed method of transforming kinetic
function expression was applied on differential forms
of JMA model to determine the duration of the induc-
tion period, �. The equations were developed for pro-
cessing of experimental data and calculation of the
kinetic parameters according to the isothermal JMA
equation, namely, induction time, �, Avrami parame-
ter, n, and rate constant, k. The testing showed that
equations developed are valid and that it is possible to
use them for determination of kinetic parameters, par-
ticularly induction time.

The authors gratefully acknowledge Prof. Etienne Schacht
for permission to use of PEU isothermal crystallization data.
The authors are also thankful to the Croatian Ministry of
Science and Technology for financial support.
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